Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36985279

RESUMO

Fungal diseases caused by Alternaria alternata constitute a significant threat to the production and quality of a wide range of crops, including beans, fruits, vegetables, and grains. Traditional methods for controlling these diseases involve synthetic chemical pesticides, which can negatively impact the environment and human health. Biosurfactants are natural, biodegradable secondary metabolites of microorganisms that have also been shown to possibly have antifungal activity against plant pathogenic fungi, including A. alternata being sustainable alternatives to synthetic pesticides. In this study, we investigated the potential of biosurfactants of three bacilli (Bacillus licheniformis DSM13, Bacillus subtilis DSM10, and Geobacillus stearothermophilus DSM2313) as a biocontrol agent against A. alternata on beans as a model organism. For this fermentation, we describe using an in-line biomass sensor monitoring both permittivity and conductivity, which are expected to correlate with cell concentration and products, respectively. After the fermentation of biosurfactants, we first characterised the properties of the biosurfactant, including their product yield, surface tension decrement capability, and emulsification index. Then, we evaluated the antifungal properties of the crude biosurfactant extracts against A. alternata, both in vitro and in vivo, by analysing various plant growth and health parameters. Our results showed that bacterial biosurfactants effectively inhibited the growth and reproduction of A. alternata in vitro and in vivo. B. licheniformis manufactured the highest amount of biosurfactant (1.37 g/L) and demonstrated the fastest growth rate, while G. stearothermophilus produced the least amount (1.28 g/L). The correlation study showed a strong positive relationship between viable cell density VCD and OD600, as well as a similarly good positive relationship between conductivity and pH. The poisoned food approach in vitro demonstrated that all three strains suppressed mycelial development by 70-80% when applied with the highest tested dosage of 30%. Regarding in vivo investigations, B. subtilis post-infection treatment decreased the disease severity to 30%, whereas B. licheniformis and G. stearothermophilus post-infection treatment reduced disease severity by 25% and 5%, respectively. The study also revealed that the plant's total height, root length, and stem length were unaffected by the treatment or the infection.

2.
Cell Biochem Funct ; 41(2): 234-242, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36655349

RESUMO

Biosurfactants produced by Bacillus species are an emerging group of surface-active molecules. They have excellent surface tension reducer and high emulsifier properties. Generally, the biosurfactant fermentation leads to a low product concentration. Therefore, our goal was to investigate Bacillus subtilis DSM10 production and improve the biosurfactant content in the broth by media optimization via response surface methodology. The optimal combinations of the investigated factors were determined as the following: pH = 9, glucose = 20 g/L, and NH4 NO3 = 2 g/L. Under the optimized conditions, the formed surfactin strain reduced surface tension in the broth by 48% (from 72 to 37 mN/m) and the isolated product by 63% (from 72 to 27 mN/m). An artificial neural network was built based on the results of response surface methodology to predict the product quality and the harvesting time of broth. Thus, finally, the model can predict the final cell and product amount, and even their time course, with around 90% reliability.


Assuntos
Bacillus subtilis , Tensoativos , Fermentação , Reprodutibilidade dos Testes , Tensoativos/química , Tensão Superficial
3.
Eng Life Sci ; 22(1): 30-39, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35024025

RESUMO

Stevia rebaudiana is a sweet herbaceous perennial plant, which is frequently used in the preparation of plant-based sweeteners. The demand for such sweeteners continues to increase due to purposeful nutrition and modern-day metabolic syndromes. More than 20 types of steviol glycosides provide a sweet taste, which are more than 300 times sweeter than sucrose. They are formed of two main components, namely stevioside and rebaudioside A. Only a handful of studies have dealt with Stevia rebaudiana leaf extracts, the conversion of pure stevioside into the preferred rebaudioside A is more common. The aim of this study was to enrich the rebaudioside A content of Stevia rebaudiana leaf extract using enzymatic bioconversion by applying fermented cyclodextrin glycosyltransferase from Bacillus licheniformis DSM13. Two differently processed plant materials, namely dried and lyophilized Stevia rebaudiana plants, were extracted and compared. Following the bioconversion, the rebaudioside A content was on average doubled. The maximum increase was fivefold with a 70-80% conversion of the stevioside.

4.
AAPS PharmSciTech ; 21(6): 214, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737608

RESUMO

A model anaerobic bacterium strain from the gut microbiome (Clostridium butyricum) producing anti-inflammatory molecules was incorporated into polymer-free fibers of a water-soluble cyclodextrin matrix (HP-ß-CD) using a promising scaled-up nanotechnology, high-speed electrospinning. A long-term stability study was also carried out on the bacteria in the fibers. Effect of storage conditions (temperature, presence of oxygen) and growth conditions on the bacterial viability in the fibers was investigated. The viability of the sporulated anaerobic bacteria in the fibers was maintained during 12 months of room temperature storage in the presence of oxygen. Direct compression was used to prepare tablets from the produced bacteria-containing fibers after milling (using an oscillating mill) and mixing with tableting excipients, making easy oral administration of the bacteria possible. No significant decrease was observed in bacterial viability following the processing of the fibers (milling and tableting).


Assuntos
Bactérias Anaeróbias/isolamento & purificação , Clostridium butyricum/isolamento & purificação , Composição de Medicamentos , Microbioma Gastrointestinal , Anaerobiose , Bactérias Anaeróbias/genética , Clostridium butyricum/genética , Excipientes , Humanos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Comprimidos , Temperatura
5.
Bioresour Technol ; 302: 122793, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32007846

RESUMO

This study investigates enhanced biogas production via co-Hydrothermal gasification (co-HTG) of wet Chlorella vulgaris biomass and hydrochar (HC). Hydrothermal carbonization was applied to valorize struvite containing waste microalgae stream into solid bio-fuel with improved combustion properties. The effects of HC quality and mixing ratio are investigated on biogas yield, composition and carbon conversion ratio. The results show that the application of blending components promotes H2, CH4 formation and selectivity in hydrothermal gasification. The total co-HTG gas yield is increased from 19.13 to 46.95 mol kg-1 at 650 °C and 300 bar by applying 5 wt% HC blending concentration and reduced level of volatile matter content (24.61 wt%). The obtained high hydrogen, methane yields and carbon conversion ratio (19.49, 2.98 mol kg-1, 82.31%, respectively) indicate effective hydrothermal upgrading potentials in case of wet and waste biomass feedstocks.


Assuntos
Biocombustíveis , Chlorella vulgaris , Biomassa , Carbono , Temperatura
6.
Pharmaceutics ; 11(7)2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31336743

RESUMO

The aims of this work were to develop a processable, electrospun formulation of a model biopharmaceutical drug, ß-galactosidase, and to demonstrate that higher production rates of biopharmaceutical-containing fibers can be achieved by using high-speed electrospinning compared to traditional electrospinning techniques. An aqueous solution of 7.6 w/w% polyvinyl alcohol, 0.6 w/w% polyethylene oxide, 9.9 w/w% mannitol, and 5.4 w/w% ß-galactosidase was successfully electrospun with a 30 mL/h feeding rate, which is about 30 times higher than the feeding rate usually attained with single-needle electrospinning. According to X-ray diffraction measurements, polyvinyl alcohol, polyethylene oxide, and ß-galactosidase were in an amorphous state in the fibers, whereas mannitol was crystalline (δ-polymorph). The presence of crystalline mannitol and the low water content enabled appropriate grinding of the fibrous sample without secondary drying. The ground powder was mixed with excipients commonly used during the preparation of pharmaceutical tablets and was successfully compressed into tablets. ß-galactosidase remained stable during each of the processing steps (electrospinning, grinding, and tableting) and after one year of storage at room temperature in the tablets. The obtained results demonstrate that high-speed electrospinning is a viable alternative to traditional biopharmaceutical drying methods, especially for heat sensitive molecules, and tablet formulation is achievable from the electrospun material prepared this way.

7.
PLoS One ; 14(1): e0210592, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30629714

RESUMO

Plant UCPs are proved to take part in the fine-tuning of mitochondrial ROS generation. It has emerged that mitochondrion can be an important early source of intracellular ROS during plant-pathogen interaction thus plant UCPs must also play key role in this redox fine-tuning during the early phase of plant-pathogen interaction. On the contrary of this well-established assumption, the expression of plant UCPs and their activity has not been investigated in elicitor induced oxidative burst. Thus, the level of plant UCPs both at RNA and protein level and their activity was investigated and compared to AOX as a reference in Arabidopsis thaliana cells due to bacterial harpin treatments. Similar to the expression and activity of AOX, the transcript level of UCP4, UCP5 and the UCP activity increased due to harpin treatment and the consequential oxidative burst. The expression of UCP4 and UCP5 elevated 15-18-fold after 1 h of treatment, then the activity of UCP reached its maximal value at 4h of treatment. The quite rapid activation of UCP due to harpin treatment gives another possibility to fine tune the redox balance of plant cell, furthermore explains the earlier observed rapid decrease of mitochondrial membrane potential and consequent decrease of ATP synthesis after harpin treatment.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiologia , Interações Hospedeiro-Patógeno , Proteínas Mitocondriais/metabolismo , Proteínas de Desacoplamento Mitocondrial/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Pseudomonas syringae/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Regulação da Expressão Gênica de Plantas , Potencial da Membrana Mitocondrial , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas de Desacoplamento Mitocondrial/genética , Oxirredução , Oxirredutases/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória
8.
Chem Rev ; 118(2): 505-613, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29155579

RESUMO

The replacement of fossil resources that currently provide more than 90% of our energy needs and feedstocks of the chemical industry in combination with reduced emission of carbon dioxide is one of the most pressing challenges of mankind. Biomass as a globally available resource has been proposed as an alternative feedstock for production of basic building blocks, which could partially or even fully replace the currently utilized fossil-based ones in well-established chemical processes. The destruction of lignocellulosic feed followed by oxygen removal from its cellulose and hemicellulose content by catalytic processes results in the formation of initial platform chemicals (IPCs). However, their sustainable production strongly depends on the availability of resources, their efficient or even industrially viable conversion processes, and replenishment time of feedstocks. Herein, we overview recent advances and developments in catalytic transformations of the carbohydrate content of lignocellulosic biomass to IPCs (i.e., ethanol, 3-hydroxypropionic acid, isoprene, succinic and levulinic acids, furfural, and 5-hydroxymethylfurfural). The mechanistic aspects, development of new catalysts, different efficiency indicators (yield and selectivity), and conversion conditions of their production are presented and compared. The potential biochemical production routes utilizing recently engineered microorganisms are reviewed, as well. The sustainability metrics that could be applied to the chemical industry (individual set of sustainability indicators, composite indices methods, material and energy flow analysis-based metrics, and ethanol equivalents) are also overviewed as well as an outlook is provided to highlight challenges and opportunities associated with this huge research area.

9.
Appl Biochem Biotechnol ; 144(1): 47-58, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18415986

RESUMO

Glycerol is a renewable resource for it is formed as a byproduct during biodiesel production. Because of its large volume production, it seems to be a good idea to develop a technology that converts this waste into products of high value, for example, to 1,3-propanediol (1,3-PD). We suggested an enzymatic bioconversion in a membrane reactor in which the NAD coenzyme can be regenerated, and three key enzymes are retained by a 10-kDa ultrafilter membrane. Unfortunately, some byproducts also formed during successful glycerol to 1,3-PD bioconversion runs, as we used crude enzyme solution of Klebsiella pneumoniae. To study the possibilities to avoid this byproduct formation, we built a mathematical description of this system. The model was also used for simulation bioconversions of high glycerol concentration with and without elimination of byproduct formation and of continuous operation.


Assuntos
Glicerol/metabolismo , Klebsiella pneumoniae/enzimologia , Propilenoglicóis/metabolismo , Reatores Biológicos , Biotecnologia , Biotransformação , Modelos Biológicos , NAD/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...